Abstract

BackgroundLike most major enzyme families, the M14 family of metallocarboxypeptidases (MCPs) contains a number of pseudoenzymes predicted to lack enzyme activity and with poorly characterized molecular function. The genome of the yeast Saccharomyces cerevisiae encodes one member of the M14 MCP family, a pseudoenzyme named Ecm14 proposed to function in the extracellular matrix. In order to better understand the function of such pseudoenzymes, we studied the structure and function of Ecm14 in S. cerevisiae.ResultsA phylogenetic analysis of Ecm14 in fungi found it to be conserved throughout the ascomycete phylum, with a group of related pseudoenzymes found in basidiomycetes. To investigate the structure and function of this conserved protein, His6-tagged Ecm14 was overexpressed in Sf9 cells and purified. The prodomain of Ecm14 was cleaved in vivo and in vitro by endopeptidases, suggesting an activation mechanism; however, no activity was detectable using standard carboxypeptidase substrates. In order to determine the function of Ecm14 using an unbiased screen, we undertook a synthetic lethal assay. Upon screening approximately 27,000 yeast colonies, twenty-two putative synthetic lethal clones were identified. Further analysis showed many to be synthetic lethal with auxotrophic marker genes and requiring multiple mutations, suggesting that there are few, if any, single S. cerevisiae genes that present synthetic lethal interactions with ecm14Δ.ConclusionsWe show in this study that Ecm14, although lacking detectable enzyme activity, is a conserved carboxypeptidase-like protein that is secreted from cells and is processed to a mature form by the action of an endopeptidase. Our study and datasets from other recent large-scale screens suggest a role for Ecm14 in processes such as vesicle-mediated transport and aggregate invasion, a fungal process that has been selected against in modern laboratory strains of S. cerevisiae.

Highlights

  • Like most major enzyme families, the M14 family of metallocarboxypeptidases (MCPs) contains a number of pseudoenzymes predicted to lack enzyme activity and with poorly characterized molecular function

  • Extracellular mutant 14 (Ecm14) is the only member of the M14 metallocarboxypeptidase family found in the S. cerevisiae yeast

  • All fungal proteins within the NCBI database were searched (June 2019) using BLASTp for homology to bovine CPA1. This resulted in a dataset of 2066 sequences, after the deletion of sequences shorter than 150 amino acids or those lacking the majority of the carboxypeptidase domain

Read more

Summary

Introduction

Like most major enzyme families, the M14 family of metallocarboxypeptidases (MCPs) contains a number of pseudoenzymes predicted to lack enzyme activity and with poorly characterized molecular function. Within kinase families, the pseudokinase FAM20A has been shown to allosterically activate its homolog, FAM20C, to enable increased phosphorylation of secreted enamel proteins [7]. Another pseudokinase, vaccinia-related kinase 3 (VRK3), McDonald et al BMC Molecular and Cell Biology (2020) 21:86 works through allosteric activation, but the activation of a phosphatase, resulting in inhibition of extracellular-regulated kinase (ERK) activity and its proliferative effects [8]. Inactive ADAMs 11, 22, and 23 serve as receptors for the secreted neuronal protein, LGI1; when ADAM22 is mutated it leads to a form of epilepsy [10, 11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call