Abstract

Recombinant polyesterase (Est119) from Thermobifida alba AHK119 was purified by two chromatography steps. The final protein was observed as a single band in SDS-PAGE, and the specific activity of Est119 for p-nitrophenyl butyrate was 2.30u/mg. Purified Est119 was active with aliphatic and aliphatic-co-aromatic polyesters. Kinetic data indicated that p-nitrophenyl butyrate (pNPB) or hexanoate was the best substrate for Est119 among p-nitrophenyl acyl esters. Calcium was required for full activity and thermostability of Est119, which was stable at 50°C for 16h. Three-dimensional modeling and biochemical characterization showed that Est119 is a typical cutinase-type enzyme that has the compact ternary structure of an α/β-hydrolase. Random and site-directed mutagenesis of wild-type Est119 resulted in improved activity with increased hydrophobic interaction between the antiparallel first and second β-sheets (A68V had the greatest effect). Introduction of a proline residue (S219P) in a predicted substrate-docking loop increased the thermostability. The specific activity of the A68V/S219P mutant on pNPB was increased by more than 50-fold over the wild type. The mutant was further activated by 2.6-fold (299u/mg) with 300mM Ca(2+) and was stable up to 60°C with 150mM Ca(2+). Another identical gene was located in tandem in the upstream of est119.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.