Abstract

The characteristics of GABA and benzodiazepine receptors were examined in the hippocampus, striatum and cerebral cortex of female rats at various times (up to 9 months) after the subcutaneous implantation of an estradiol pellet (10 mg). A significant decrease in the B max of the high-affinity binding of [ 3H]muscimol to membranes from these 3 regions was detected as soon as one week after the implantation. Although the characteristics of the high-affinity binding of [ 3H]flunitrazepam remained unaffected during the whole treatment, the stimulatory effect of GABA (and muscimol) on this binding was significantly reduced by estrogenization. The changes in GABA receptor binding appeared functionally relevant since the elevation of striatal acetylcholine levels normally induced by the peripheral administration of muscimol (5 mg/kg) was significantly lower in estradiol-treated than in control female rats. In contrast to that observed in intact female rats, the implantation of estradiol in hypophysectomized animals did not affect the characteristics of [ 3H]muscimol binding to hippocampal, striatal and cortical membranes. [ 3H]muscimol binding was also unchanged in female rats implanted with estradiol and treated chronically with bromocriptine for 3 weeks. Since both hypophysectomy and the chronic administration of bromocriptine suppressed the hyperprolactinemia normally induced by estrogenization, the down-regulation of central GABA receptors very likely involved prolactin in intact animals implanted with 17-β-estradiol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.