Abstract
Antivirulence strategies addressing bacterial pathogenicity without exhibiting growth inhibition effects represent a novel approach to overcome today's crisis in antibiotic development. In recent studies, we examined various inhibitors of PqsD, an enzyme involved in formation of Pseudomonas aeruginosa cell-to-cell signaling molecules, and observed desired cellular effects for 2-nitrophenyl derivatives. Herein, we investigated the binding characteristics of this interesting compound class using several biochemical and biophysical methods. The inhibitors showed time-dependent activity, tight-binding behavior, and interactions with the catalytic center. Furthermore, isothermal titration calorimetry (ITC) experiments with separated enantiomers revealed contrary thermodynamic signatures showing either enthalpy- or entropy-driven affinity. A combination of site-directed mutagenesis and thermodynamic profiling was used to identify key residues involved in inhibitor binding. This information allowed the proposal of experimentally confirmed docking poses. Although originally designed as transition state analogs, our results suggest an altered position for both enantiomers. Interestingly, the main difference between stereoisomers was found in the orientation of the hydroxyl group at the stereogenic center. The predicted binding modes are in accordance with experimental data and, thus, allow future structure-guided optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.