Abstract

We have investigated the biochemical and functional properties of toposome, a major protein component of sea urchin eggs and embryos. Atomic force microscopy was utilized to demonstrate that a Ca(2+)-driven change in secondary structure facilitated toposome binding to a lipid bilayer. Thermal denaturation studies showed that toposome was dependent upon calcium in a manner paralleling the effect of this cation on secondary and tertiary structure. The calcium-induced, secondary, and tertiary structural changes had no effect on the chymotryptic cleavage pattern. However, the digestion pattern of toposome bound to phosphatidyl serine liposomes did vary as a function of calcium concentration. We also investigated the interaction of this protein with various metal ions. Calcium, Mg(2+), Ba(2+), Cd(2+), Mn(2+), and Fe(3+) all bound to toposome. In addition, Cd(2+) and Mn(2+) displaced Ca(2+), prebound to toposome, while Mg(2+), Ba(2+), and Fe(3+) had no effect. Collectively, these results further enhance our understanding of the role of Ca(2+) in modulating the biological activity of toposome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call