Abstract

Mutations in the protein product of the retinal degeneration slow (RDS) gene cause both rod-dominant retinitis pigmentosa and different forms of cone-dominant macular dystrophies. In particular, mutations in codon 244 can cause either of these types of disease. In this study, we examine the biochemical effects of N244H and N244K in an effort to understand the mechanism underlying rod- and cone-dominant defects, respectively. COS-1 cells were cotransfected with either wild-type (WT) RDS or RDS containing an N244H or N244K mutation along with its binding partner, ROM-1 (rod outer segment membrane protein 1). Cell extracts were analyzed for mutant protein stability by Western blot, and localization was examined by immunocytochemistry. Interactions between transfected proteins were assessed by reciprocal co-immunoprecipitation, and nonreducing velocity sedimentation was used to identify the pattern of RDS complex assembly. Interactions were confirmed using GST fusion constructs of WT and mutant RDS in GST pull-down assays from WT mouse retinal extract. In COS-1 cells, recombinant N244H RDS had a weakened ability to assemble into higher-order complexes but retained the ability to co-immunoprecipitate with ROM-1 as well as localize properly throughout the cells. In contrast, recombinant N244K protein did not associate with ROM-1, showed signs of protein aggregation, and colocalized with an ER marker. These experiments support the hypothesis that RDS mutations that interrupt higher-order oligomer formation but still interact with ROM-1 and fold properly in membranes may cause dominant, gain-of-function disease phenotypes while mutations that cause RDS misfolding (and thus incorrect trafficking and assembly) may be associated with a loss-of-function haploinsufficiency phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.