Abstract

HIV is a retrovirus that infects CD4+ T lymphocytes in human beings and causes immunodeficiency. In the recent years, various therapies have been developed against HIV, including targeting the HIV specific protein, integrase, responsible for integration of HIV cDNA into host DNA. Although, integrase is specific to HIV, it has functional and structural similarity with RAG1, one of the partner proteins associated with V(D)J recombination, a process by which immune diversity is generated in humans. Currently, there are three HIV integrase inhibitors: Elvitegravir, Dolutegravir, and Raltegravir, in the market which have been approved by the FDA (USA). All three drugs are used in anti-retroviral therapy (ART). Previously, we showed that amongst the HIV inhibitors, Elvitegravir could significantly decrease B cell maturation in vivo and inhibit the physiological activities of RAGs in vitro, unlike Raltegravir. In the present study, we address the effect of second-generation integrase inhibitor, Dolutegravir on RAG activities. Binding and nicking studies showed that, Dolutegravir could decrease the binding efficiency of RAG1 domains and cleavage on DNA substrates, but not as considerably as Elvitegravir. Thus, we show that although the integrase inhibitors such as Elvitegravir show an affinity towards RAG1, the newer molecules may have lesser side-effects.

Highlights

  • Acquired immune-deficiency syndrome (AIDS) is the consequence of a period of infection of the human immunodeficiency virus (HIV)

  • We have investigated the impact of second-generation integrase inhibitor, Dolutegravir, on V(D)J recombinase and its action

  • Activity of the proteins were confirmed based on RAG nicking assay, in which a radiolabelled 12 RSS DNA was cleaved by RAGs at the 5′ end of the heptamer leading to the release of 17-nt fragment, which was detected on a denaturing PAGE

Read more

Summary

Introduction

Acquired immune-deficiency syndrome (AIDS) is the consequence of a period of infection of the human immunodeficiency virus (HIV). During the process of V(D)J recombination, RAG1 and RAG2, generally termed as RAG complex, bind to the nonamer of 12 or 23 RSS and cleave at 5′ end of heptamer sequence, resulting in a single-strand break (SSB) or DNA nick.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.