Abstract

This study examined sorption of the human and veterinary antibiotic sulfamethoxazole (SMX) at environmentally relevant concentrations from laboratory clean water, surface water, stormwater, and wastewater effluent to wood and wastewater-sludge derived biochars produced under a wide range of conditions. SMX sorption by commercial powdered activated carbon (PAC) was also quantified as a benchmark. Wood-based biochar produced around 850 °C performed similarly to PAC. Biochar sorption capacity increased with surface area up to ∼400 m2/g. However, a further increase in surface area did not correspond to an increase in sorption capacity. Sorbent H:C ratios correlated with SMX uptake by PAC and wood-based biochars, but not for the sludge-based biochars. This is possibly due to an indirect influence of the high ash content in sludge-based biochars, as the isolated ash fraction exhibited negligible SMX sorption capacity. The presence of dissolved organic matter (DOM) in the natural and anthropogenic waters fouled most of the sorbents (i.e., decreased SMX uptake). The sludge-based biochars experienced less DOM fouling relative to wood-based biochar, particularly in the wastewater effluent. Biochar and PAC sorption kinetics were similar when examined over a contact time of four-hours, suggesting their performance ranking would be consistent at contact times typically utilized in water treatment systems. In the presence of DOM, SMX relative removal (C/C0) was independent of SMX initial concentration when the initial concentration was below 10 μg/L, thus permitting the relative removal results to be applied for different SMX initial concentrations typical of environmental and anthropogenically impacted waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call