Abstract
Bioretention system with modified media has been increasingly used to control dissolved nutrients in stormwater runoff. However, complicated removal processes and improper design have made most of them hardly achieve comprehensive dissolved nutrient removal and even show by-product generation problem, especially during extreme stormwater events. Here, a modified biochar-pyrite (FeS2) bi-layer bioretention system was developed and tested under various stormwater conditions with conventional sand-based and woodchip-based bioretention systems as controls. The modified system showed high stability and efficiency for dissolved nutrient treatment. The removal of dissolved organic nitrogen, ammonium, total dissolved nitrogen, and total dissolved phosphorus were 86.3–93.0%, 95.3–98.1%, 41.4–76.5%, and 69.7–88.2%, respectively. Stormwater conditions only influence nitrate removal which decreased with the increase of total received volume and increased with the extension of antecedent drying duration. Net sulfate and total iron generation were very low, less than 8 mg/L and 0.15 mg/L, respectively. Several microbiology, spectroscopy, and media related tests further demonstrated that the vadose zone and submerged zone showed synergy effects during operation. Biochar addition facilitated ammonium adsorption, nitrification, and in situ denitrification in the vadose zone. It also intercepted dissolved oxygen, which alleviated aerobic pyrite oxidation and created an anoxic condition for the submerged zone. Meanwhile, the pyrite-modified submerged zone achieved stable mixotrophic denitrification. The generated iron intermediate products further controlled phosphorus from both influent and vadose zone leaching into stable forms. Mixotrophic denitrification and potential sulfate reduction processes also reduce sulfate generation. Overall, the biochar-pyrite bi-layer bioretention is a highly promising technology for stormwater runoff treatment, with effective dissolved nutrient removal and minimal by-product generation in various stormwater conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.