Abstract

The residue of atrazine in field soils poses a major threat to crop growth in the rotation system, raising concerns about grain security and food safety. Current agricultural production requires more efficient and cost-effective mitigation measures in response to the emerging threat. This study reported the critical concentration (0.1 mg L−1) of atrazine injury to soybean seedlings in soil pore water and how biochar amendment could influence the distribution of atrazine in different soil environments. The results showed that biochar significantly reduced the concentration of atrazine in soil pore water, for example, 0.5% biochar in red (cinnamon, fluvo-aquic, paddy, black) soil reduced atrazine concentration from 0.31 (0.20, 0.18, 0.12, 0.03) mg L−1 to 0.004 (0.002, 0.005, 0.013, 0.011) mg L−1 in pore water (P < 0.01). On the basis of these, a reliable mathematical model was developed to predict the atrazine concentration in soil pore water under (or without) biochar amendment conditions. The verification results showed that the mean absolute percentage error of the model was 14.1%, indicating that the prediction error was within a reasonable range. Our work provides a precise solution to crop injury caused by soil residual herbicides with the aid of biochar, which reduces the bioavailability of atrazine in soybean seedlings. This method not only maximizes the use of biochar but also provides effective crop protection and environmental benefits.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.