Abstract

Atrazine is one of the most used herbicides, posing non-neglectable threats to ecosystem and human health. This work studied the performance and mechanisms of surface-modified biochar in accelerating atrazine biodegradation by exploring the changes in atrazine metabolites, bacterial communities and atrazine degradation-related genes. Among different types of biochar, nano-hydroxyapatite modified biochar achieved the highest degradation efficiency (85.13 %), mainly attributing to the increasing pH, soil organic matter, soil humus, and some enriched indigenous bacterial families of Bradyrhizobiaceae, Rhodospirillaceae, Methylophilaceae, Micrococcaceae, and Xanthobacteraceae. The abundance of 4 key atrazine degradation-related genes (atzA, atzB, atzC and triA) increased after biochar amendment, boosting both dechlorination and dealkylation pathways in atrazine metabolism. Our findings evidenced that biochar amendment could accelerate atrazine biodegradation by altering soil physicochemical properties, microbial composition and atrazine degradation pathways, providing clues for improving atrazine biodegradation performance at contaminated sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.