Abstract

Antimony, extensively used in energy applications, poses toxicity and contamination concerns, especially in anaerobic environments where its impact on microbial activity is poorly understood. Emerging remedies, like biochar, show promise in soil and water treatment. This study investigates biochar's influence on methanogenic activity under Sb(V) and Sb(III) stress using anaerobic sludge as inoculum and lactate as the carbon source. Sb(III) and Sb(V) were introduced at varied concentrations (5-80 mg/L), with or without biochar, monitoring changes in biogas production, pH, Sb, and lactate levels over time. Experiments with Sb(V) also involved calculating mass balance and electron distribution. Results showcased the following significant enhancements: biochar notably improved COD removal and biogas production in Sb(III) spiked conditions, up to 5-fold and 2-fold increases, respectively. Sb(III) removal reached up to 99% with biochar, while in high Sb(V) concentrations, biochar reduced the adverse effect on biogas production by 96%. Adsorption capacities favored biomass (60.96 mg Sb(III)/gVSS, and 22.4 mg Sb(V)/gVSS) over biochar (3.33 mg Sb(III)/g, and 1.61 mg Sb(V)/g) for both Sb species. This study underscores biochar's potential to mitigate metalloid impact on methanogenic activity while aiding Sb removal from liquid phase, suggesting promising implications for remediation and methane production enhancement strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.