Abstract

Biochar application into paddy is an improved strategy for addressing methane (CH4) stimulation of straw biomass incorporation. Whereas, the differentiative patterns and mechanisms on CH4 emission of straw biomass and biochar after long years are still blur. Considering economic feasibility, a seven-year of field experiment was conducted to explore the long-term CH4 mitigation effect of annual low-rate biochar incorporation (RSC, 2.8 t ha-1), with annual rice straw incorporation (RS, 8 t ha-1) and control (CK, with no biochar or rice straw amendment incorporation) as a comparation. Results showed that RSC mitigated CH4 emission while RS stimulated CH4 significantly (p < 0.05) and stably over 7 experimental years compared with CK. RSC mitigated 14.8 ~ 46.7% of CH4 emission compared with CK. In comparison to RSC, RS increased 111 ~ 950.5% of CH4 emission during 7 field experimental years. On the 7th field experimental year, pH was significantly increased both in RS and RSC treatment (p < 0.05). RSC significantly (p < 0.05) increased soil nitrate (NO3--N) while RS significantly (p < 0.05) increased dissolved carbon (DOC) when compared to each other. Soil NO3--N inhibitory on methanogens and promotion on methanotrophs was verified by laboratory experiment, while soil pH and DOC mainly promoted methanogens abundance. Significantly (p < 0.05) increased DOC and soil pH enhanced methanogens growth and stimulated CH4 emission in RS treatment. Higher soil NO3--N in RSC than CK and RS contributed to CH4 mitigation. Soil NO3--N and DOC were identified as the key factors differentiating CH4 emission patterns of RS and RSC in 2019. Collectively, soil NO3--N impacts on CH4 flux provide new ideas for prolonged effect of biochar on CH4 mitigation after years.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.