Abstract

Coupling dissimilatory nitrate reduction to ammonium (DNRA) pathway with anammox process has a prominent advantage in enhancement of nitrogen removal. However, the anammox bacteria driven-DNRA is difficult to proceed at normal autotrophic circumstance. Herein, for the first time, biochar (prepared by bamboo) was used as a mediator to stimulate the DNRA pathway of anammox bacteria under varying chemical oxygen demand (COD) to nitrogen (COD/N) ratios (0.1–0.7), and the underlying stimulation mechanism was elucidated by metagenomics sequencing analysis. Results showed that biochar addition (10 g/L) stimulated DNRA pathway of anammox bacteria at low COD/N ratios (0.1–0.5), thus enhancing the nitrogen removal efficiency (NRE) of the anammox system by 7.2%–16.4% and 0.9%–3.0%, respectively, compared to that of tests without sodium acetate and biochar (p<0.05). This enhancement was attributed to the improved extracellular electron accepting capacity of anammox biomass by biochar. The easily obtained electrons (from sodium acetate) further increased the relative abundances of anammox-related (hzs) and complete DNRA-related (napAB and nrfAH) genes (p<0.05), which catalyze electron-consuming reactions. The stimulated anammox pathway and DNRA pathway further increased the specific anammox activity and the relative abundance of anammox bacteria (especially Ca. Jettenia) by 15.5%–23.0% and 11.3%–82.6% compared with that without biochar, respectively. Metagenomics sequencing also revealed that anammox bacteria, Ca. Jettenia caeni, was the main bacteria for DNRA metabolism in this system. Our findings reveal that biochar could selectively stimulate DNRA pathway of anammox bacteria affiliated by a low amount of carbon, which provides a novel strategy to improve the nitrogen removal of anammox-based processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.