Abstract

The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent.

Highlights

  • Woolf et al [1] estimate that 1.8 Pg CO2-carbon equivalents can be sequestered each year through the sustainable production and application of 0.9 Pg of biochar to agricultural land which sequesters carbon (C), reduces CH4 and N2O emissions, and results in avoided CO2 emissions

  • Charcoal intentionally produced by humans through pyrolysis for soil amendment, is a type of black carbon, like soot or charcoal [2,3]

  • Adding 0.9 Pg of biochar to the agricultural landscape would correspond to a 4–20 fold increase in global black carbon production (0.04 to 0.194 Pg yr21; [4])

Read more

Summary

Introduction

Woolf et al [1] estimate that 1.8 Pg CO2-carbon equivalents can be sequestered each year through the sustainable production and application of 0.9 Pg of biochar to agricultural land which sequesters carbon (C), reduces CH4 and N2O emissions, and results in avoided CO2 emissions. Biochar soil amendment can increase crop productivity [3,8], potentially by improving the hydrologic properties of the soils [9]. Homogeneous soil materials with different grain sizes and surface chemistry allowed us to examine biochar-soil interactions and to compare our results to established soil hydrology models. These data begin to address an important knowledge gap by providing new quantitative constraints on how biochar amendments change K and the chemistry of soil leachate; this work points to the need for more mechanistic studies to examine biochar-soil-water interactions

Materials and Methods
Results and Discussion
47 Mg ha21
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.