Abstract

The world is currently facing significant challenges in reducing the concentration of atmospheric carbon dioxide (CO2) through scientific methods, primarily by sequestering the CO2 in the soil. Biochar is a kind of charcoal that is primarily composed of carbon, hydrogen, and oxygen. Due to its aromatic content, biochar can persist in the environment for an extended period and absorb greenhouse gases (GHG). Each year, biochar effectively captures an estimated amount of CO2 ranging from 1 to 35 gigatons (GtCO2) and 78 to 477 GtCO2 over this century. Biochar helps mitigate climate change by sequestering carbon in the soil for extended periods and consequently reducing GHG emissions. This enhances soil fertility, water retention capacity, and nutrient circulation, which promote higher crop yields. Biochar's by-products of biochar can be harvested and used as a renewable energy source. Besides, biochar integration can be effective in waste management strategies that mitigate the challenges of organic waste disposal. Biochar is also an efficient water purification element that favors climate action. Through the application of biochar alteration can be employed to establish carbon credits, and its methods can effectively reduce carbon emissions to an acceptable level. Biochar's unique properties, wide-spread applicability, cost-effectiveness, and trustworthy development prospects demonstrate great potential towards the Sustainable Development Goals (SDG). This review discusses the properties, diverse applications, and social and technical impacts of biochar in the global carbon cycle towards sustainable development goals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call