Abstract

We examined the effect of biochar on the water-soluble arsenic (As) concentration and the extent of organochlorine degradation in a co-contaminated historic sheep-dip soil during a 180-d glasshouse incubation experiment. Soil microbial activity, bacterial community and structure diversity were also investigated. Biochar made from willow feedstock (Salix sp) was pyrolysed at 350 or 550°C and added to soil at rates of 10 g kg-1 and 20 g kg-1 (representing 30 t ha-1 and 60 t ha-1). The isomers of hexachlorocyclohexane (HCH) alpha-HCH and gamma-HCH (lindane), underwent 10-fold and 4-fold reductions in concentration as a function of biochar treatment. Biochar also resulted in a significant reduction in soil DDT levels (P < 0.01), and increased the DDE:DDT ratio. Soil microbial activity was significantly increased (P < 0.01) under all biochar treatments after 60 days of treatment compared to the control. 16S amplicon sequencing revealed that biochar-amended soil contained more members of the Chryseobacterium, Flavobacterium, Dyadobacter and Pseudomonadaceae which are known bioremediators of hydrocarbons. We hypothesise that a recorded short-term reduction in the soluble As concentration due to biochar amendment allowed native soil microbial communities to overcome As-related stress. We propose that increased microbiological activity (dehydrogenase activity) due to biochar amendment was responsible for enhanced degradation of organochlorines in the soil. Biochar therefore partially overcame the co-contaminant effect of As, allowing for enhanced natural attenuation of organochlorines in soil.

Highlights

  • The rearing and sale of sheep has made a significant contribution to New Zealand’s economy

  • The legacy of this practice today is an estimated 50,000 historic sheep-dip sites throughout New Zealand that potentially pose a risk to the environment

  • The magnitude of the decrease in DDT concentration was influenced by the biochar treatment used. 350°C biochar at 2% resulted in a reduction of 38% of total DDT in soil compared to the control, while 350°C biochar (1%) and 550°C biochar (2%) reduced total DDT concentrations by 27 and 25%, respectively

Read more

Summary

Introduction

The rearing and sale of sheep has made a significant contribution to New Zealand’s economy. Throughout much of the 19th and 20th centuries there was a legal requirement that all animals sold were pest free [1], and this was achieved by submerging sheep in pesticide baths containing organochlorines and arsenicals. This practice occurred on every sheep farm in New Zealand between 1840 and 1960 [1,2,3]. The use of organochlorines in pest control was subsequently banned when it became clear that they accumulate in body fat and can subsequently be passed onto consumers [3,7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call