Abstract

Cadmium (Cd) has no known role in plant biology and is toxic to plants and animals. The Cd mainly accumulated in agricultural soils through anthropogenic activities, such as sewage water irrigation and phosphorus fertilization. Biochar (BC) has been proposed as an amendment to reduce metal toxicity in plants. The objective of this study was to evaluate the role of BC (cotton stick at a rate of 0, 3, and 5%) on Cd uptake and the photosynthetic, physiological, and biochemical responses of spinach (Spinacia oleracea) grown in Cd-spiked soil (0, 25, 50, 75, and 100mg Cdkg-1 soil). The results showed that Cd toxicity decreased growth, photosynthetic pigments, gas exchange characteristics, and amino acid and protein contents in 52-day-old spinach seedlings. The Cd treatments increased the concentrations of Cd, sugar, ascorbic acid, and malondialdehyde (MDA) in plants. The application of BC ameliorated the harmful effects of Cd in spinach plants. Under Cd stress, BC application increased the growth, photosynthesis, and protein contents and decreased Cd concentrations and MDA contents in plants. The maximum BC-mediated increase in dry biomass was about 25% with 5% BC application in control plants. It is concluded that BC could ameliorate Cd toxic effects in spinach through changing the physiological and biochemical attributes under Cd stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.