Abstract
Two pot experiments were conducted to evaluate biochar derived from dead dairy cattle as a mineral fertilizer, especially phosphorus (P) fertilizer, and to clarify the effect of particle size of biochar on plant growth (Zea mays L.) and P uptake. To produce the biochar, body parts of dead cattle were placed in a charring chamber and allowed to char at 450°C for 4 h. The biochar was of high pH and rich in major plant nutrients, especially P. Application of fine biochar (< 1 mm) increased P uptake by the corn plants grown in soil of low available P status. As a result, plant growth was improved following biochar application and dry matter production was also increased. The effect of the biochar application on the P uptake and plant growth was promoted by the application of mineral nitrogen (N) fertilizer. Soil analysis after harvest indicated that the biochar application increased soil pH, available P and exchangeable calcium (Ca) and magnesium (Mg) compared with the soil before seeding, while soil available N and exchangeable potassium (K) were considerably decreased. The decrease in the soil available N was incomprehensible, because the result of the mass balance given by the difference between input as the applied N from the biochar and fertilizer N and output as the N uptake by the plants was positive. We observed a similar result in the mass balance of K to the case of N. The medium (2–4 mm) and coarse (> 4 mm) grade biochar did not significantly affect plant growth, because P uptake was not, or was only slightly, increased by the application of these biochars. Dissolution of P from the coarser biochars was probably slower than that of the fine biochar. The lower dissolution of P from the medium and coarse biochars was supported by the lower P absorption efficiency of these biochars compared with that of the fine biochar and superphosphate. The effect of fine biochar on plant growth and P uptake was similar to that of superphosphate. We can therefore conclude that fine biochar derived from cattle carcasses is an effective source of P fertilizer and amendment for soil acidity. The N and K contents in the biochar, although relatively high, cannot be relied upon as a mineral fertilizer. Further studies are needed to assess whether the N and K contents of the biochar indicate it can be regarded as a useful fertilizer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.