Abstract

Phosphorus (P) is a vital nutrient for plant growth and food production. Excessive amounts of P fertilizers to a greater extent of crop P offtake are inevitably applied due to low utilization efficiency, causing environmental pollution. This study aimed to evaluate biochar-based fertilizers (BBFs) produced by co-pyrolyzing algae (A) and hazelnut shell (H) biomasses with triple superphosphate (TSP) at a ratio of 4:1 (w/w). The potential of the slow-release performance of BBFs was studied during kinetics experiments. The co-pyrolysis of biomasses with TSP yielded BBFs with significantly different properties, including electrical conductivity, pH, elemental ratios, functional groups, specific surface area and pore size characteristics. Phosphorus release from all biochars and BBFs followed the Elovich model, except for TSP and H+TSP. Kinetic studies revealed prolonged P-release times and slower release rates for BBFs compared to conventional TSP. So that, TSP released 100% of the total P, whereas H+TSP and A+TSP biochars released only 3.14% and 5.14% of the total P, respectively, during a 240-hour experiment. The slow-release performance of BBFs suggests their potential as promising alternatives to conventional phosphate fertilizers. BBFs have the potential to enhance P utilization efficiency, increase crop yield and mitigate the environmental impact of P fertilizer runoff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.