Abstract

A high-efficient energy recovery system of biochar-assisted anaerobic membrane bioreactor (BC-AnMBR) was established for swine wastewater treatment. Comparing with a conventional AnMBR, biochar addition accelerated volatile fatty acids (VFA) degradation during start-up stage, thereby shortened start-up duration by 44.0 %. Under a high organic loading rate (OLR) of 21.1 gCOD/L/d, BC-AnMBR promoted COD removal efficiency from 90.1 % to 95.2 %, and maintained a high methane production rate of 4.8L CH4/L/d. The relative abundance of Methanosaeta declined from 53.9 % in conventional AnMBR to 21.0 % in BC-AnMBR, whereas that of Methanobrevibacter dramatically increased from 10.3 % to 70.9 %, respectively. Metabolic pathway analysis revealed that biochar not only strengthened hydrogenotrophic methanogenesis pathway, but also upregulated the genes encoding electron transfer carriers and riboflavin metabolism, suggesting the role of biochar facilitating direct interspecies electron transfer for syntrophic methanogenesis. The excellent energy yield performances under high OLR confirmed BC-AnMBR as an advanced system for high-strength swine wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.