Abstract

Examples of biochar as an alternative to traditional plastic fillers, like carbon black, are numerous and growing. However, in the agricultural mulch film application, both the polymer and its fillers are pushed to their mechanical limit to obtain an effective product, using the least amount of plastic. Through a combined techno-economic analysis (TEA) and life cycle assessment (LCA), this study characterizes the use of carbon-negative biochar as an opacity filler in mulch film applications. Due to its larger particle size, the biochar demands additional thickness to achieve equivalent opacity as carbon black in films. A thicker film translates to additional polymer demand, and a significant increase in price and environmental impact. A comparable formulation for an equal price ($623 per mulched ha) as a 2.6 wt % carbon black with 25 μm thickness was derived, needing 15 wt % biochar and a thickness of 30 μm. The biochar formulation resulted in a slightly higher global warming potential (3% increase), but much larger impact in the land use category (+339%), and the sample was deemed not fit for use in the intended mulch application. These results indicate that in applications where the polymeric matrix and its fillers are pushed to their mechanical limit, the displacement of traditional fillers by biochar is challenging. However, biochar derived from waste biomass (thus reducing land use impact) remains a valid, environmentally beneficial solution to displace traditional fillers for non-extreme plastic uses (commodity plastics) and thicker composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call