Abstract

Biochar has been applied as a bulk agent or an additive to compost. The mixture of biochar and compost has been considered to exert synergistic effect as a soil amendment. In a composting system, the macro-porous sites of biochar may act as a novel niche that selects and cultures the microorganisms from the bulk compost. A variety of volatile organic carbons (VOCs) such as aromatic hydrocarbons and aliphatics were detected in biochar pellets (BC) pyrolyzed at 100°C. In the mesosphilic phase, the water-soluble carbon (WSC) and water-soluble phenols (WSP) in biochar increased from 2.1 to 26mgkg−1 and 5.9 to 101μgkg−1, respectively. These labile carbons however, were subjected to a rapid metabolism over the composting course. We further compared the responses of microbial community in BC to those in the bulk organic matter. Both Shannon-Wiener and Richness indexes of bacterial communities were higher in BC than in the adjacent compost (ADJ) and the bulk organic matter (control). As for fungal communities, the two indexes were higher in BC than ADJ and control only in the mature phase. During the composting course, the bacterial activity was higher than the fungal counterpart in terms of the changes of corresponding biomarkers, glucosamine and muramic acids. The results suggested that the diversified labile carbons sources including VOCs and WSC in BC could influence the structure of microbial community and resulted in an enhanced carbon catabolic capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.