Abstract

Syngas from biomass or steel mills can be fermented into a dilute stream of ethanol and acetic acid, which requires energy intensive distillation for product recovery. This can be circumvented by selective secondary fermentation of the syngas fermentation effluent to caproic acid as easier recoverable platform chemical with Clostridium kluyveri. Here, we explore the impact of biochar and activated carbon on this process. Changes during the fermentation with biochar or activated carbon were monitored, different doses were tested and the recyclability of biochar and activated carbon was assessed. Biochar decreased the lag phase and increased the caproic acid production rate (up to 0.50 g·L-1·h-1). Upon recycling for subsequent fermentation, biochar retained this property largely. Activated carbon addition, especially at high dose, could potentially increase the conversion and selectivity towards caproic acid to 14.15 g·L-1 (control: 11.01 g·L-1) and 92% (control: 84%), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.