Abstract

Dumping of acidic mine waste poses severe threats to the ecosystem due to high acidity, nutrient deficiency and mobility of toxic metals. The present study has been undertaken on phytoremediation by amending the acidic soil/mine waste with biochar (BC) and plantation of palmarosa (Cymbopogon martini (Roxb.) Wats. A greenhouse experiment in different combinations of biochar and acidic mine waste was conducted to assess the phytoremediation efficiency of palmarosa by BC amendments. Results indicate that the palmarosa tolerates multiple stresses effectively with a 54 % metal tolerance index (MTI) and capable of reducing acid production from the acidic mine waste alone. BC incorporation in the mine waste and soil treatments significantly enhanced the palmarosa biomass (1.11–3.3 times) and oil content by liming the acid, immobilization of metals and improving the soil quality. BC addition in highly acidic mine waste amplified the phytoremediation efficiency and mitigates abiotic oxidative stress on plants (MTI 84 % to >100 %). BC aided palmarosa plantation shifted the soil from high-risk assessment code (RAC) to low RAC for vegetation. Biochar amendments along with palmarosa plantation offer a sustainable technology for phytostabilization of highly acidic mine waste along with the production of industrially important essential oil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call