Abstract

The effects of biochar aging on heavy-metal bioavailability and microbial activity are not fully understood. This study determined the effect over 270 days of poultry-litter biochar (PBC) and sugar-gum-wood biochar (SBC) on the bioavailability of Cd and microbial activity in acidic soils differing in organic matter content. Soil basal and substrate-induced respirations, microbial properties, Cd bioavailability and plant Cd bioaccumulation were evaluated at 1, 30, 90 and 270 days. The addition of PBC decreased Cd bioaccumulation by 81% and 85% while SBC decreased bioaccumulation by 47% and 56% in high (Chromosol) and low (Sodosol) organic matter soils, respectively, at Day 1. By Day 270, Cd bioaccumulation significantly (P < 0.05) increased in SBC-amended soils but decreased in PBC-amended soils. The addition of PBC increased both basal and substrate-induced microbial respirations compared to the other treatments over 270-day aging. However, SBC increased microbial biomass C compared to the PBC after Day 30. Aging decreased microbial respiration and biomass C in biochar-amended soils. It is concluded that Cd bioaccumulation increased in SBC-amended soils during aging whereas the PBC decreased Cd bioaccumulation and that the selection of biochar is important to enhance remediation efficiency in the long term.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call