Abstract

The combined action of biochar and C-S-H (calcium-silicate-hydrate) in the cement mortars as adsorbents was explored for treating heavy metals from water. The biochar admixture cement mortars were ground to fines for use as adsorbents with the rationale that combined action of Ca, Si, Al etc. based industrial waste with conventional adsorbent biochar could enhance the removal efficiency of contaminants and therefore the overarching aim was to study the removal capacity for three selected heavy metals (Pb2+, Cu2+ and Zn2+) commonly found in the aqueous waste stream. Batch adsorption was carried out on single and multi-metal systems to determine the removal efficiency under varied conditions such as pH, dosage of adsorbent, the effect of contact time and the initial concentration of the adsorbate. For Pb(II), Cu (II) and Zn(II), pH 5 was optimized for single and multi-metal batch sorption studies. A dosage of 20 mg for single metal and 70 mg for multi-metal of an adsorbent dose was found to be sufficient to remove about 70–90% of the three heavy metals in 25 mL solution. Langmuir model best described the isotherm data with maximum adsorption capacities of 476, 81, 123 mg/g for Pb2+, Cu2+ and Zn2+ for BC-40 during single metal adsorption, which were quite comparable to other C-S-H and cement-based adsorbents. The metal hydroxides precipitation, the ion exchange between the Ca2+ and metal ions and metal complexation were explained as plausible mechanisms for the heavy metal removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call