Abstract

A hydroponics system developed using a nutrient film technique was used to evaluate the effectiveness of rice husk biochar (RB) alone or in combination with perlite (PL) as substrates for increasing the growth of leafy vegetables compared with that of PL. Seedlings of cabbage, dill, mallow, red lettuce, and tatsoi were grown hydroponically in PL, RB, and PL + RB (1:1 ratio of PL to RB, v/v) substrates for a 30-d under optimal environmental conditions in a greenhouse. Shoot length and fresh/dry masses of cabbage, dill, and red lettuce plants grown in RB substrate were decreased by 49% on average compared to those plants grown in PL substrate. In contrast, PL + RB substrate led to approximately 2-fold increases in shoot length, number of leaves, and fresh/dry masses of leafy vegetable plants compared with those grown in PL substrate. Foliar nutritional composition (Ca, Mg, K, Na, Mn, Fe, and Zn) and nitrogen status (SPAD index) of plants grown in PL + RB and PL substrates suggested the presence of optimal growth conditions for ensuring optimum yield with high quality. In addition, RB substrate contributed to respective increases of 1.2–3.5-fold in leaf K, Mg, Mn, and Zn contents in most vegetable plants compared with those grown in PL substrate. The RB alone or in combination with PL substrates decreased algal growth in the nutrient solutions as confirmed by scanning electron micrographs of microalgae on the RB surface. The results also indicated that use of PL + RB hydroponic substrate could be an alternative and effective technology for the better management of unwanted algal growth in nutrient solutions and high production of leafy vegetables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.