Abstract
The nitrilase from Alcaligenes faecalis ECU0401 belongs to the category of arylacetonitrilase, which could hydrolyze 2-chloromandelonitrile, 3,4-dimethoxyphenylacetonitrile, mandelonitrile, and phenylacetonitrile into the corresponding arylacetic acids. To overcome the permeability barrier and prepare whole cell biocatalysts with high activities, permeabilization of Alcaligenes faecalis ECU0401 in relation to nitrilase activity was optimized by using cetyltrimethylammonium bromide (CTAB) as permeabilizing agent. The nitrilase activity from Alcaligenes faecalis ECU0401 increased 4.5-fold when the cells were permeabilized with 0.3% (w/v) CTAB for 20 min at 25 degrees C and pH 6.5. Consequently, almost all the mandelonitrile was consumed and converted to (R)-(-)-mandelic acid with greater than 99.9% enantiomeric excess (e.e.) by the CTAB-permeabilized cells. The permeability barrier has been significantly reduced in the hydrolysis of mandelonitrile by using CTAB-permeabilized cells and a dynamic resolution was successfully achieved, giving a 100% theoretical yield of (R)-(-)-mandelic acid. Efficient biocatalyst recycling was achieved as a result of cell immobilization in calcium alginate, with a product-to-biocatalyst ratio of 3.82 g (R)-(-)-mandelic acid g(-1) dry cell weight (dcw) cell after 20 cycles of repeated use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Industrial Microbiology & Biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.