Abstract
A multicomponent enzyme-catalyzed process is suggested for the synthesis of a novel series of 1,3,4-oxadiazole thioether derivatives with yields ranging from 65 to 94%. Novozym 435, the immobilized form of Candida antarctica lipase B (CALB), was found to efficiently catalyze the reaction. The products were evaluated for antitumor activities against two cancer cell lines, HT-29 (human colorectal cancer cell) and HepG2 (human liver cancer cell), by MTT assays. Among them, two compounds exhibited higher antitumor activities, for both cell lines, compared to doxorubicin. In silico molecular docking and computational ADME analysis were performed to propose a mode of action for the anti-cancer activities and to predict drug-likeness, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.