Abstract
We report the first biocatalytic modification of sesquiterpene lactones (STLs) found in the chicory plants, specifically lactucin (Lc), 11β,13-dihydrolactucin (DHLc), lactucopicrin (Lp), and 11β,13-dihydrolactucopicrin (DHLp). The selective O-acylation of their primary alcohol group was carried out by the lipase B from Candida antarctica (CAL-B) using various aliphatic vinyl esters as acyl donors. Perillyl alcohol, a simpler monoterpenoid, served as a model to set up the desired O-acetylation reaction by comparing the use of acetic acid and vinyl acetate as acyl donors. Similar conditions were then applied to DHLc, where five novel ester chains were selectively introduced onto the primary alcohol group, with conversions going from >99 % (acetate and propionate) to 69 % (octanoate). The synthesis of the corresponding O-acetyl esters of Lc, Lp, and DHLp was also successfully achieved with near-quantitative conversion. Molecular docking simulations were then performed to elucidate the preferred enzyme-substrate binding modes in the acylation reactions with STLs, as well as to understand their interactions with crucial amino acid residues at the active site. Our methodology enables the selective O-acylation of the primary alcohol group in four different STLs, offering possibilities for synthesizing novel derivatives with significant potential applications in pharmaceuticals or as biocontrol agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.