Abstract

Short-chain carboxylic acids generated by various mixed- or pure-culture fermentation processes have been considered valuable precursors for production of bioalcohols. While conversion of carboxylic acids into alcohols is routinely performed with catalytic hydrogenation or with strong chemical reducing agents, here, a biological conversion route was explored. The potential of carboxydotrophic bacteria, such as Clostridium ljungdahlii and Clostridium ragsdalei, as biocatalysts for conversion of short-chain carboxylic acids into alcohols, using syngas as a source of electrons and energy is demonstrated. Acetic acid, propionic acid, n-butyric acid, isobutyric acid, n-valeric acid, and n-caproic acid were converted into their corresponding alcohols. Furthermore, biomass yields and fermentation stoichiometry from the experimental data were modeled to determine how much metabolic energy C. ljungdahlii generated during syngas fermentation. An ATP yield of 0.4-0.5 mol of ATP per mol CO consumed was calculated in the presence of hydrogen. The ratio of protons pumped across the cell membrane versus electrons transferred from ferredoxin to NAD(+) via the Rnf complex is suggested to be 1.0. Based on these results, we provide suggestions how n-butyric acid to n-butanol conversion via syngas fermentation can be further improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call