Abstract
Casein glycomacropeptide (cGMP) and lactose, which are purified (or semi-purified) components obtained from side streams from dairy industry operations, were used as substrates for enzyme catalyzed production of 3′-sialyllactose, a model case compound for human milk oligosaccharides (HMOs). The enzyme employed was a mutated sialidase, Tr6, derived from Trypanosoma rangeli, and expressed in Pichia pastoris after codon-optimization. The Tr6 contained 6 point mutations and exhibited trans-sialidase activity. The Tr6 trans-sialidase reaction conditions were tuned for maximizing Tr6 catalyzed 3′-sialyllactose production by optimizing pH, temperature, acceptor, and donor concentrations using response surface designs. At the optimum reaction conditions, the Tr6 catalyzed the transfer of sialic acid from cGMP to lactose at high efficiency without substantial hydrolysis of the 3′-sialyllactose product. The robustness of the Tr6 catalyzed reaction was verified at 5L-scale providing a yield of 3.6g 3′-sialyllactose at an estimated molar trans-sialylation yield of 50% on the 3′-sialyl in cGMP. Lacto-N-tetraose and lacto-N-fucopentaoses also functioned as acceptor molecules demonstrating the versatility of the Tr6 trans-sialidase for catalyzing sialyl-transfer for generating different HMOs. The data signify the applicability of enzymatic trans-sialylation on dairy side-stream components for production of human milk oligosaccharides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.