Abstract
Horseradish peroxidase (HRP) was used to catalyze the oxidation of bisphenol A (BPA) in a reverse micelle system consisting of water, sodium bis(2-ethylhexyl)sulfosuccinate (AOT) as the surfactant, and n-octane as the organic solvent phase. In order to achieve maximal BPA transformation, a water-to-surfactant molar ratio greater than 15 was required, above which no further increase in conversion was observed. BPA transformation was catalyzed in the reverse micelle system over a pH range of 6–9 with an optimum at pH 7 and was enhanced with increasing temperatures up to 40 °C. The stoichiometric ratio of moles of bisphenol A transformed per mole of peroxide consumed was 0.46 when the initial BPA concentration was 0.01 mM, which is significantly less than the theoretical value of 2 based on the known catalytic cycle of the enzyme. However, the stoichiometric ratio increased and approach the theoretical value with higher BPA concentrations. Over the course of the catalytic reaction, the enzyme became inactivated. Hydrogen peroxide strongly inhibited the enzyme and, thus, when the oxidant was present in quantities in excess of the stoichiometric amount, BPA transformation was significantly reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.