Abstract
AbstractChiral amines represent a prominent functional group in pharmaceuticals and agrochemicals and are hence attractive targets for asymmetric synthesis. Since the pharmaceutical industry has identified biocatalysis as a valuable tool for synthesising chiral molecules with high enantiomeric excess and under mild reaction conditions, enzymatic methods for chiral amine synthesis are increasing in importance. Among the strategies available in this context, the asymmetric reduction of imines by NAD(P)H‐dependent enzymes and the related reductive amination of ketones have long remained underrepresented. However, recent years have witnessed an impressive progress in the application of natural or engineered imine‐reducing enzymes, such as imine reductases, opine dehydrogenases, amine dehydrogenases, and artificial metalloenzymes. This review provides a comprehensive overview of biocatalytic imine reduction and reductive amination of ketones, highlighting the natural roles, substrate scopes, structural features, and potential application fields of the involved enzymes.magnified image
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.