Abstract

Lipase-based cross-linked aggregates were investigated for a non-specific reaction, i.e. the epoxidation of α-pinene to its oxygenated derivatives. The activity of the biocatalysts has been evaluated in a green context, i.e. ethyl acetate as both acetate-supplier and organic solvent with H2O2/UHP/TBHP as oxidant. Screening of the lipase sources indicated Aspergillus niger lipase as the most efficient biocatalyst for this reaction. Different immobilization protocols ((i) cross-linked enzyme aggregates (CLEA), (ii) cross-linked enzyme aggregates onto magnetic particles (CLEMPA) and (iii) covalent immobilized enzyme (CIE) onto magnetic particles (MP)) were evaluated considering the activity as main parameter. Thus, CLEA and CLEMPA afforded better epoxidation yields of α-pinene towards CIE. The investigated biocatalytic systems allowed to transform α-pinene into oxigenated derivatives with industrial and commercial applications (e.g. α-pinene oxide, camphene, pinanediol and camphonelic aldehyde). FTIR investigations on the biocatalysts revealed the effects of the immobilization protocol on the enzyme secondary-structure. Additionally, textural characterizations were performed by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM) analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.