Abstract
Nature harnesses exquisite enzymatic cascades to construct N-heterocycles and further uses these building blocks to assemble the molecules of life. Here we report an enzymatic platform to construct important chiral N-heterocyclic products, pyrrolidines and indolines, via abiological intramolecular C(sp3)-H amination of organic azides. Directed evolution of cytochrome P411 (a P450 enzyme with serine as the heme-ligating residue) yielded variant P411-PYS-5149, capable of catalyzing the insertion of alkyl nitrene into C(sp3)-H bonds to build pyrrolidine derivatives with good enantioselectivity and catalytic efficiency. Further evolution of activity on aryl azide substrates yielded variant P411-INS-5151 that catalyzes intramolecular C(sp3)-H amination to afford chiral indolines. In addition, we show that these enzymatic aminations can be coupled with a P411-based carbene transferase or a tryptophan synthase to generate an α-amino lactone or a noncanonical amino acid, respectively, underscoring the power of new-to-nature biocatalysis in complexity-building chemical synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.