Abstract

Mushroom laccases are biocatalysts that oxidize various substrates. To identify a novel enzyme involved in lignin valorization, we isolated and characterized laccase isoenzymes from the mushroom Hericium erinaceus. The laccase cDNAs (Lac1a and Lac1b) cloned from the mushroom mycelia consisted of 1536 bp and each encoded a protein with 511 amino acids, containing a 21-amino-acid signal peptide. Comparative phylogenetic analysis revealed high homology between the deduced amino acid sequences of Lac1a and Lac1b and those from basidiomycetous fungi. In the Pichia pastoris expression system, high extracellular production of Lac1a, a glycoprotein, was achieved, whereas Lac1b was not expressed as a secreted protein because of hyper-glycosylation. Biochemical characterization of the purified recombinant Lac1a (rLac1a) protein revealed its oxidizing efficacy toward 14 aromatic substrates. The highly substrate-specific rLac1a showed catalytic efficiencies of 877 s−1 mM−1, 829 s−1 mM−1, 520 s−1 mM−1, and 467 s−1 mM−1 toward 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), hydroquinone, guaiacol, and 2,6-dimethylphenol, respectively. Moreover, rLac1a showed approximately 10 % higher activity in non-ionic detergents and >50 % higher residual activity in various organic solvents. These results indicate that rLac1a is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.