Abstract

AbstractFluorine is a critical element for the design of bioactive compounds, driving advances in selective and sustainable fluorination. However, stereogenic tertiary fluorides pose a synthetic challenge and are thus present in only a few approved drugs (fluticasone, solithromycin, and sofosbuvir). The aldol reaction of fluorinated donors provides an atom‐economical approach to asymmetric C−F motifs via C−C bond formation. We report that the type II pyruvate aldolase HpcH and engineered variants perform addition of β‐fluoro‐α‐ketoacids (including fluoropyruvate, β‐fluoro‐α‐ketobutyrate, and β‐fluoro‐α‐ketovalerate) to diverse aldehydes. The reactivity of HpcH towards these fluoro‐donors grants access to enantiopure secondary or tertiary fluorides. In addition to representing the first synthesis of tertiary fluorides via biocatalytic carboligation, the afforded products could improve the diversity of fluorinated building blocks and enable the synthesis of fluorinated drug analogs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.