Abstract

Enzymes are renowned for their catalytic efficiency and selectivity, but many classical transformations in organic synthesis have no biocatalytic counterpart. Aldolases are prodigious C-C bond-forming enzymes, but their reactivity has only been extended past activated carbonyl electrophiles in special cases. To probe the mechanistic origins of this limitation, we use a pair of aldolases whose activity is dependent on pyridoxal phosphate. Our results reveal how aldolases are limited by kinetically favourable proton transfer with solvent, which undermines aldol addition into ketones. We show how a transaldolase can circumvent this limitation, enabling efficient addition into unactivated ketones. The resulting products are highly sought non-canonical amino acids with side chains that contain chiral tertiary alcohols. Mechanistic analysis reveals that transaldolase activity is an intrinsic feature of pyridoxal phosphate chemistry and identifies principles for extending aldolase catalysis beyond its previous limits to enable convergent, enantioselective C-C bond formation from simple starting materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.