Abstract

The emergence of resistance to frontline antibiotics has called for novel strategies to combat serious pathogenic infections. Methicillin-resistant Staphylococcus aureus [MRSA] is one such pathogen. As opposed to traditional antibiotics, bacteriostatic anti-virulent agents disarm MRSA, without exerting pressure, that cause resistance. Herein, we employed a thermophilic Thermotoga maritima tryptophan synthase (TmTrpB1) enzyme followed by an isonitrile synthase and Fe(II)-α-ketoglutarate-dependent oxygenase, in sequence as biocatalysts to produce antivirulent indole vinyl isonitriles. We report on conversion of simple derivatives of indoles to their C3-vinyl isonitriles, as the enzymes employed here demonstrated broader substrate tolerance. In toto, eight distinct L-Tryptophan derived α-amino acids (7) were converted to their bioactive vinyl isonitriles (3) by action of an isonitrile synthase (WelI1) and an Fe(II)-α-ketoglutarate-dependent oxygenase (WelI3) yielding structural variants possessing antivirulence against MRSA. These indole vinyl isonitriles at 10 μg/mL are effective as antivirulent compounds against MRSA, as evidenced through analysis of rabbit blood hemolysis assay. Based on a homology modelling exercise, of enzyme-substrate complexes, we deduced potential three dimensional alignments of active sites and glean mechanistic insights into the substrate tolerance of the Fe(II)-α-ketoglutarate-dependent oxygenase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call