Abstract

Chromobacterium viscosum (CV) lipase was immobilized in gelatin-containing Aerosol-OT (AOT) microemulsion-based organogels (MBGs). The behavior of this novel, predominantly hydrophobic matrix as an esterification catalyst has been examined. The biocatalyst was most effective when the MBG was granulated to yield gel particles of approximately 500 mum diameter, providing a total surface area of ca. 10(6) mm(2) per 10 cm(3) of gel. The gel was generally contacted with a solution of the substrate(s) in a hydrocarbon oil. Under most conditions reaction was not diffusion limited. Apparent lipase activity was influenced by certain compositional changes in the MBG, but most significantly when the R value, the mole ratio of water to surfactant, was altered. Higher activities were observed at lower R values. Although gels of lowest R value expressed the highest condensation activity, such formulations were physically unsuitable as immobilization matrices due to their proximity to the gel-solution phase boundary. MBGs of intermediate R values (between 60 and 80) were considered most suitable because they offer relatively high condensation activity and good physical stability. The gelatin concentration also exerted a small but measurable influence on the observed condensation rates. Apparent lipase activity was also influenced to some extent by the nature of the parent hydrocarbon used to prepare the MBG. Higher activities were obtained using formulations derived from isooctane and cyclohexane rather than the n-alkanes. Condensation activities expressed by CV lipase in the MBGs were broadly comparable to those expressed in the analogous parent water-in-oil (w/o) microemulsions. The MBGs functioned effectively in neat substrate solutions, but the condensation activity expressed by the MBGs in a series of successive batch syntheses was adversely affected by the formation and retention of the water coproduct. Selective removal of the water was achieved using a concentrated solution of dry reverse micelles, which resulted in recovery of lost activity. Pretreatment of lipase-containing MBGs resulted in the formation of MBGs with enhanced catalytic properties and modified composing the conventional procedure. (c) 1997 John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call