Abstract

The application of biocatalysis has become essential in both academic and industrial domains for the asymmetric synthesis of chiral amines, and it serves as an alternative tool to transition-metal catalysis and complements traditional chemical methods. It relies on the swift expansion of available processes, primarily as a result of advanced tools for enzyme discovery, combined with high-throughput laboratory evolution techniques for optimising biocatalysts. This manuscript highlights recent chemical and technological developments contributing to the sustainable applications of biocatalysis with industrial interest. Specifically, the use of non-conventional reaction media and the combination with photocatalysis can enhance production of chiral amines by allowing higher working concentrations and cascade transformations, leading to high yields and enantiomeric excesses. Furthermore, a selection of both known and modern strategies for enzyme immobilisation, along with the use of fed-batch and flow synthesis, demonstrates the potential to translate laboratory synthesis to effective scaled-up applications and improve the processing of large reaction volumes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call