Abstract
Biological processes may provide great and previously unexplored opportunities for cost-effective, in situ improvement of the engineering properties of soil. A laboratory study was conducted to evaluate the changes in geomechanical properties of sand attributable to the formation of calcium precipitates induced through ureolysis catalyzed by Sporosarcina pasteurii (S. pasteurii). Specifically, direct shear and California Bearing Ratio (CBR) tests were conducted on sand specimens subjected to treatment by growing, resting, and dead S. pasteurii cells in completely stirred tank reactors and completely mixed biofilm reactors, respectively. Scanning electron microscopy analyses were also conducted to evaluate microbially induced precipitation. The results of the study show that the bacterial cells effectively improved the geomechanical properties of the sand. Growing cells improved the sand properties owing to microbially induced precipitation and related pore volume changes, whereas dead and resting cells ge...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Geotechnical and Geoenvironmental Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.