Abstract

BiOBr and BiOCl were decorated on TiO2 QDs through n-p-p heterojunctions by a simple strategy and they were applied for degradation of three organic dyes upon visible illumination. The obtained photocatalysts were analyzed via XRD, FESEM, EDX, UV–vis DRS, PL, BET, TEM, HRTEM, FT-IR, EIS, XPS, and transient photocurrent measurements. The TiO2 QDs/BiOBr/BiOCl nanocomposite with 20% wt. of BiOBr and 30% wt. of BiOCl displayed superior photoability in the degradation of methylene blue, rhodamine B, and fuchsine, which was almost 34.5, 176, and 78.7-times larger than TiO2 and 27.8, 13.5, and 51.5-folds greater than TiO2 QDs, respectively. The results show that the construction of intimate n-p-p heterojunctions between BiOBr, TiO2 QDs, and BiOCl counterparts leads to enhanced visible-light harvesting and improved charge separation, resulted efficiently increased photocatalytic activity. The trapping results proved that h+, •O2−, and OH• species have considerable effects on the degradation reaction. We think that the improved efficiency of the ternary TiO2 QDS/BiOBr/BiOCl photocatalyst is a splendid alternative for the removal of toxic contaminants from wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.