Abstract

In the current paper, Bi-objective portfolio optimization problem has been tackled using multiobjective optimization framework. Three popular multiobjective optimization algorithms are used for solving this problem. These are: Archive Multi-objective Simulated Annealing (AMOSA) algorithm, Non-dominated Sorting Genetic algorithm II (NSGA-II) and Multi-objective Particle Swarm Optimization using Crowding distance (MOPSOCD). For each algorithm we trace the Pareto optimal front and compare the results by using four comparisons metrics, Spread, Spacing, Set Coverage and Maximum Spread. Comparative results show that NSGA-II performs the best as compared to the other two algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.