Abstract

The purpose of this study was to explore the biobehavioral correlates of adaptive behavior in the context of a standardized laboratory-based mission-relevant challenge [the Soldier Performance and Effective, Adaptable Response (SPEAR) task]. Participants were 26 healthy male volunteers (M = 34.85 years, SD = 4.12) with active military duty and leadership experience within the last 5 years (i.e., multiple leadership positions, operational deployments in combat, interactions with civilians and partner nation forces on the battlefield, experience making decisions under fire). The SPEAR task simultaneously engages perception, cognition, and action aspects of human performance demands similar to those encountered in the operational setting. Participants must engage with military-relevant text, visual, and auditory stimuli, interpret new information, and retain the commander’s intent in working memory to create a new plan of action for mission success. Time-domain measures of heart period and respiratory sinus arrhythmia (RSA) were quantified, and saliva was sampled [later assayed for cortisol and alpha-amylase (sAA)] before-, during-, and post-SPEAR. Results revealed a predictable pattern of withdraw and recovery of the cardiac vagal tone during repeated presentation of battlefield challenges. Recovery of vagal inhibition following executive function challenge was strongly linked to better task-related performance. Rate of RSA recovery was also associated with better recall of the commander’s intent. Decreasing magnitude in the skin conductance response prior to the task was positively associated with better overall task-related performance. Lower levels of RSA were observed in participants who reported higher rates of combat deployments, and reduced RSA flexibility was associated with higher rates of casualty exposure. Greater RSA flexibility during SPEAR was associated with greater self-reported resilience. There was no consistent pattern of task-related change in cortisol or sAA. We conclude that individual differences in psychophysiological reactivity and regulation in response to an ecologically valid, military-relevant task are associated with performance-related adaptive behavior in this standardized operational setting. The implications for modern day warfare, where advancing our understanding of the nature of individual differences in adaptive problem solving is critical to mission success, fitness for duty, and other occupational health-related outcomes, are discussed.

Highlights

  • Modern day warfare requires real-time problem solving to meet changing uncertainties in operational environments

  • In this study of a small group of experienced military leaders, we observed that: cardiac vagal tone demonstrated a predictable pattern of withdraw and recovery during repeated presentation of battlefield challenges, recovery of cardiac vagal tone following

  • A set of executive function challenges led to responses that were more adaptive to the battlefield challenges, and executive function was not directly related to adaptive problem solving capacity

Read more

Summary

Introduction

Modern day warfare requires real-time problem solving to meet changing uncertainties in operational environments. The US military’s experiences over the last two decades have illuminated the changing nature of conflict. Fast paced, requires less kinetic action, and more often involves the integration of security operations with development programs relative to past eras of conflict. Soldiers and small unit leaders must be resourceful, creative, and adaptively recalibrate to negotiate and succeed on the modern battlefield [1, 2]. The Army’s Warfighting Challenge #10 (i.e., first-order problems critical to future capabilities) is to “develop agile, adaptive, and innovative leaders who thrive in conditions of uncertainty and chaos, and are capable of visualizing, describing, directing, leading, and assessing operations in complex environments and against adaptive enemies” [3]. Adaptability is a core capability and is critical to mission success, fitness for duty, and is likely related to other occupational health-related outcomes (e.g., hypertension, sleep disturbance, and depression)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.