Abstract

Diallylated p-coumaric acid (A2CM) and triallylated caffeic acid (A3CF) were synthesized by the reactions of p-coumaric acid and caffeic acid with allyl bromide in the presence of potassium carbonate. The thiol-ene photopolymerization of A2CM and a pentaerythritol-based tetrathiol (S4P) as well as that of A3CF/S4P at allyl/thiol and (allyl + enone)/thiol ratios of 1/1 produced cured products. The FT-IR spectral analysis revealed that the thiol-ene reaction of allyl and thiol groups mainly progressed for the products cured at an allyl/thiol ratio of 1/1, while both allyl and enone groups reacted with thiol groups for the products cured at an (allyl + enone)/thiol ratio of 1/1. The progress of the thiol-ene reaction of the enone and thiol groups caused the lowering of the glass transition and 5% weight loss temperatures (Tg and Td5). The A3CF/S4P cured at an allyl/thiol ratio of 1/1 exhibited the highest Tg, Td5, tensile strength, and tensile modulus among all the cured products. Diallylated p-coumaric acid (A2CM) and triallylated caffeic acid (A3CF) were thiol-ene photo-polymerized with a pentaerythritol-based tetrathiol (S4P) at allyl/thiol and (allyl+enone)/thiol ratios of 1/1. The FT-IR spectral analysis revealed that the reaction of allyl and thiol groups mainly progressed for the products cured at the allyl/thiol ratio of 1/1, while both allyl and enone groups reacted with thiol groups for the products cured at an (allyl+enone)/thiol ratio of 1/1. The A3CF/S4P cured at an allyl/thiol ratio of 1/1 exhibited the highest glass transition temperature, 5% weight loss temperature, tensile strength and modulus among all the cured products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.