Abstract
The growing population and waste biomass accumulation are leading to increased environmental pollution and climate change. Waste biomass comprising of nutrient rich components has promising potential to produce value-added products for sustainable environmental solutions. This review explores the critical role of bio-based heterogeneous catalysts in enabling sustainable waste biomass utilization. In industrial chemical transformations, over 95% involve catalysts, with more than 90% being heterogeneous systems, prized for their robustness, ease of product separation, and reusability. Bio-based heterogeneous catalysts address the pressing need for sustainable waste biomass management, allowing the conversion of diverse waste biomasses into biodiesel as valuable products. Research on these catalysts, particularly for biodiesel production, has shown yields exceeding 90% with enhanced catalyst reusability. This surge in research is evident from the increasing number of published articles, notably in 2022 and 2023, highlighting growing interest and importance in the scientific community. The synthesis of these catalysts is examined, including novel approaches and techniques to enhance their efficiency, selectivity, and stability. The challenges with their feasible solutions of heterogeneous catalysts in catalyst-based processes are addressed. Altogether, this review underscores the immense potential of bio-based heterogeneous catalysts in sustainable waste biomass utilization, aligning with resource efficiency and environmental conservation goals while offering distinct insights and perspectives on the latest innovations in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.