Abstract

In this paper, a series of bio-based epoxy resins containing organic silicone were prepared from eugenol through a mild synthetic route. Then, 4,4′-diaminophenyl methane (DDM) was applied to cure these epoxy resins, and bisphenol A epoxy resin (DGEBA) was used as a control. The chemical structures of the synthesized resins were characterized by nuclear magnetic resonance (1H-NMR). Properties of the cured epoxy resins were investigated by dielectric test, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). Compared with DGEBA, the bio-based epoxy resin containing cyclic organic silicon structure exhibited a dramatically lower dielectric constant at both low and high frequencies (3.46, 1 kHz, room temperature). Moreover, the silicone-modified bio-based epoxy resins demonstrated no weight loss below 325 °C and higher residues at 800 °C than that of DGEBA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call